Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.652
Filtrar
1.
Microbiologyopen ; 13(2): e1397, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38441345

RESUMO

This study aimed to understand the antibiotic resistance prevalence among Enterococcus spp. from raw and treated sewage in Bergen city, Norway. In total, 517 Enterococcus spp. isolates were obtained from raw and treated sewage from five sewage treatment plants (STPs) over three sampling occasions, with Enterococcus faecium as the most prevalent (n = 492) species. E. faecium strains (n = 307) obtained from the influent samples, showed the highest resistance against quinupristin/dalfopristin (67.8%). We observed reduced susceptibility to erythromycin (30.6%) and tetracycline (6.2%) in these strains. E. faecium strains (n = 185) obtained from the effluent samples showed highest resistance against quinupristin/dalfopristin (68.1%) and reduced susceptibility to erythromycin (24.9%) and tetracycline (8.6%). We did not detect resistance against last-resort antibiotics, such as linezolid, vancomycin, and tigecycline in any of the strains. Multidrug-resistant (MDR) E. faecium strains were detected in both influent (2.3%) and effluent (2.2%) samples. Whole genome sequencing of the Enterococcus spp. strains (n = 25) showed the presence of several antibiotic resistance genes, conferring resistance against aminoglycosides, tetracyclines, and macrolides, as well as several virulence genes and plasmid replicons. Two sequenced MDR strains from the effluents belonged to the hospital-associated clonal complex 17 and carried multiple virulence genes. Our study demonstrates that clinically relevant MDR Enterococcus spp. strains are entering the marine environment through treated sewage.


Assuntos
Enterococcus faecium , Enterococcus faecium/genética , Tetraciclina , Esgotos , Antibacterianos/farmacologia , Enterococcus/genética , Eritromicina/farmacologia , Noruega
2.
Food Microbiol ; 120: 104492, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38431334

RESUMO

Enterococci are widely distributed in dairy sector. They are commensals of the gastrointestinal tract of animals, thus, via fecal contamination, could reach raw milk and dairy products. The aims of this study were: 1) to investigate the enterococcal diversity in cow feces and milk samples and 2) to evaluate the antibiotic resistance (AR) of dairy-related enterococci and their ability to transfer resistance genes. E. faecalis (59.9%), E. faecium (18.6%) and E. lactis (12.4%) were prevalent in milk, while E. faecium (84.2%) and E. hirae (15.0%) were dominant in bovine feces. RAPD-PCR highlighted a high number of Enterococcus biotypes (45 from milk and 37 from feces) and none of the milk strains exhibited genetic profiles similar to those of feces biotypes. A high percentage of enterococci isolated from milk (71%) were identified as multidrug resistant and resistance against streptomycin and tetracycline were widespread among milk strains while enterococci from feces were commonly resistant to linezolid and quinupristin/dalfopristin. Only E. faecalis strains were able to transfer horizontally the tetM gene to Lb. delbrueckii subsp. lactis. Our results indicated that Enterococcus biotypes from milk and bovine feces belong to different community and the ability of these microorganisms to transfer AR genes is strain-dependent.


Assuntos
Enterococcus faecium , Enterococcus , Feminino , Bovinos , Animais , Enterococcus/genética , Leite , Técnica de Amplificação ao Acaso de DNA Polimórfico , Testes de Sensibilidade Microbiana , Antibacterianos/farmacologia , Resistência Microbiana a Medicamentos , Fezes , Biodiversidade , Farmacorresistência Bacteriana/genética , Enterococcus faecalis
3.
Urogynecology (Phila) ; 30(3): 320-329, 2024 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-38484249

RESUMO

IMPORTANCE: The relationship between Enterococcus faecalis vaginal colonization and urinary tract infections (UTIs) remains uncertain. OBJECTIVE: We aimed to evaluate the surface invasion capability of E faecalis isolates from patients with and without UTIs as a potential readout of pathogenicity. STUDY DESIGN: Participants were females from urogynecology clinics, comprising symptomatic UTI and asymptomatic non-UTI patients, categorized by the presence or absence of E faecalis-positive cultures identified via standard urine culture techniques. Vaginal and urine samples from patients were plated on enterococci selective medium, and E faecalis isolates detected in both cohorts were species specific identified using 16S rRNA sequencing. Clinical isolates were inoculated on semisolid media, and both external colonies and underneath colony prints formed by agar-penetrating enterococci were imaged. External growth and invasiveness were quantified by determining colony-forming units of the noninvading and agar-penetrating cells and compared with the E faecalis OG1RF. RESULTS: We selected E faecalis isolates from urine and vaginal samples of 4 patients with and 4 patients without UTIs. Assays demonstrated that most isolates formed similarly sized external colonies with comparable colony-forming unit. Surface invasion differed across patients and isolation sites compared with OG1RF. The vaginal isolate from UTI patient 1, who had the most recurrences, exhibited significantly greater agar-invading capacity compared with OG1RF. CONCLUSIONS: Our pilot study indicates that ex vivo invasion assays may unveil virulence traits in E faecalis from UTI patients. Enhanced enterococcal surface penetration could increase urogenital invasion risk. Further research is needed to correlate penetration with disease severity in a larger patient group.


Assuntos
Enterococcus , Infecções Urinárias , Feminino , Humanos , Masculino , Enterococcus/genética , Ágar , Projetos Piloto , RNA Ribossômico 16S
4.
J Therm Biol ; 120: 103786, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38428103

RESUMO

Heat stress is a common environmental factor in livestock breeding that has been shown to impact the development of antibiotic resistance within the gut microbiota of both human and animals. However, studies investigating the effect of temperature on antibiotic resistance in Enterococcus isolates remain limited. In this study, specific pathogen free (SPF) mice were divided into a control group maintained at normal temperature and an experimental group subjected to daily 1-h heat stress at 38 °C, respectively. Gene expression analysis was conducted to evaluate the activation of heat shock responsive genes in the liver of mice. Additionally, the antibiotic-resistant profile and antibiotic resistant genes (ARGs) in fecal samples from mice were analyzed. The results showed an upregulation of heat-inducible proteins HSP27, HSP70 and HSP90 following heat stress exposure, indicating successful induction of cellular stress within the mice. Furthermore, heat stress resulted in an increase in the proportion of erythromycin-resistant Enterococcus isolates, escalating from 0 % to 0.23 % over a 30-day duration of heat stress. The resistance of Enterococcus isolates to erythromycin also had a 128-fold increase in minimum inhibitory concentration (MIC) within the heated-stressed group compared to the control group. Additionally, a 2∼8-fold rise in chloramphenicol MIC was observed among these erythromycin-resistant Enterococcus isolates. The acquisition of ermB genes was predominantly responsible for mediating the erythromycin resistance in these Enterococcus isolates. Moreover, the abundance of macrolide, lincosamide and streptogramin (MLS) resistant-related genes in the fecal samples from the heat-stressed group exhibited a significant elevation compared to the control group, primarily driven by changes in bacterial community composition, especially Enterococcaceae and Planococcaceae, and the transfer of mobile genetic elements (MGEs), particularly insertion elements. Collectively, these results highlight the role of environmental heat stress in promoting antibiotic resistance in Enterococcus isolates and partly explain the increasing prevalence of erythromycin-resistant Enterococcus isolates observed among animals in recent years.


Assuntos
Enterococcus , Eritromicina , Humanos , Animais , Camundongos , Eritromicina/farmacologia , Enterococcus/genética , Antibacterianos/farmacologia , Fezes , Resposta ao Choque Térmico
5.
BMC Microbiol ; 24(1): 98, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38528458

RESUMO

OBJECTIVE: The association between heart failure (HF) and intestinal inflammation caused by a disturbed intestinal microbiota in infants with congenital heart disease (CHD) was investigated. METHODS: Twenty infants with HF and CHD who were admitted to our hospital between October 2021 and March 2022 were included in this study. Twenty age- and sex-matched infants without HF at our hospital were selected as the control group. Faecal samples were obtained from each participant and analysed by enzyme-linked immunoassay and 16 S rDNA sequencing to assess intestinal inflammatory factors and the microbiota. RESULTS: The levels of intestinal inflammatory factors, including IL-1ß, IL-4, IL-6, IL-17 A and TNF-α, were greatly increased, while the levels of IL-10 were significantly decreased in the HF group compared to the control group (p < 0.05). The intestinal microbial diversity of patients in the HF group was markedly lower than that in the control group (p < 0.05). The abundance of Enterococcus was significantly increased in the HF group compared to the control group (p < 0.05), but the abundance of Bifidobacterium was significantly decreased in the HF group compared to the control group (p < 0.05). The diversity of the intestinal microbiota was negatively correlated with the levels of IL-1ß, IL-4, IL-6 and TNF-α in the intestinal tract but was positively correlated with that of IL-10. The abundance of Enterococcus was positively associated with the levels of IL-1ß, IL-4, IL-6 and TNF-α in the intestinal tract but was negatively correlated with that of IL-10. NT-proBNP was positively associated with the levels of IL-1ß, IL-4, IL-6 and TNF-α in the HF group but was negatively correlated with that of IL-10. The heart function score was positively associated with the levels of IL-1ß, IL-4, IL-6 and TNF-α in the HF group but was negatively correlated with that of IL-10. CONCLUSIONS: Infants with CHD-related HF had a disordered intestinal microbiota, decreased diversity of intestinal microbes, increased levels of pathogenic bacteria and decreased levels of beneficial bacteria. The increased abundance of Enterococcus and the significant decrease in the diversity of the intestinal microbiota may exacerbate the intestinal inflammatory response, which may be associated with the progression of HF.


Assuntos
Cardiopatias Congênitas , Insuficiência Cardíaca , Lactente , Humanos , Interleucina-10 , Fator de Necrose Tumoral alfa , Interleucina-6 , Interleucina-4 , Insuficiência Cardíaca/complicações , Cardiopatias Congênitas/complicações , Enterococcus/genética , Inflamação
6.
Microbiol Res ; 283: 127702, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38552381

RESUMO

Enterococci comprise a group of lactic acid bacteria (LAB) with considerable potential to serve as food fermentation microorganisms. Unfortunately, enterococci have received a lot of negative attention, due to the occurrence of pathogenic and multidrug resistant strains. In this study, we used genomics to select safe candidates among the forty-four studied enterococcal isolates. The genomes of the forty-four strains were fully sequenced and assessed for presence of virulence and antibiotic resistance genes. Nineteen isolates belonging to the species Enterococcus lactis, Enterococcus faecium, Enterococcus durans, and Enterococcus thailandicus, were deemed safe from the genome analysis. The presence of secondary metabolite gene clusters for bacteriocins was assessed, and twelve candidates were found to secrete antimicrobial compounds effective against Listeria monocytogenes isolated from cheese and Staphylococcus aureus. Physiological characterization revealed nineteen industrial potentials; all strains grew well at 42 °C and acidified 1.5 hours faster than their mesophilic counterpart Lactococcus lactis, with which they share metabolism and flavor forming ability. We conclude that a large fraction of the examined enterococci were safe and could serve as excellent food fermentation microorganisms with inherent bioprotective abilities.


Assuntos
Bacteriocinas , Enterococcus faecium , Fermentação , Enterococcus/genética , Enterococcus faecium/genética , Antibacterianos/farmacologia , Antibacterianos/metabolismo , Genômica
7.
Proc Natl Acad Sci U S A ; 121(10): e2310852121, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38416678

RESUMO

Enterococci are gut microbes of most land animals. Likely appearing first in the guts of arthropods as they moved onto land, they diversified over hundreds of millions of years adapting to evolving hosts and host diets. Over 60 enterococcal species are now known. Two species, Enterococcus faecalis and Enterococcus faecium, are common constituents of the human microbiome. They are also now leading causes of multidrug-resistant hospital-associated infection. The basis for host association of enterococcal species is unknown. To begin identifying traits that drive host association, we collected 886 enterococcal strains from widely diverse hosts, ecologies, and geographies. This identified 18 previously undescribed species expanding genus diversity by >25%. These species harbor diverse genes including toxins and systems for detoxification and resource acquisition. Enterococcus faecalis and E. faecium were isolated from diverse hosts highlighting their generalist properties. Most other species showed a more restricted distribution indicative of specialized host association. The expanded species diversity permitted the Enterococcus genus phylogeny to be viewed with unprecedented resolution, allowing features to be identified that distinguish its four deeply rooted clades, and the entry of genes associated with range expansion such as B-vitamin biosynthesis and flagellar motility to be mapped to the phylogeny. This work provides an unprecedentedly broad and deep view of the genus Enterococcus, including insights into its evolution, potential new threats to human health, and where substantial additional enterococcal diversity is likely to be found.


Assuntos
Enterococcus faecium , Infecções por Bactérias Gram-Positivas , Animais , Humanos , Enterococcus/genética , Antibacterianos/farmacologia , Enterococcus faecium/genética , Enterococcus faecalis/genética , Filogenia , Testes de Sensibilidade Microbiana , Farmacorresistência Bacteriana
8.
J Glob Antimicrob Resist ; 36: 336-344, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38336229

RESUMO

OBJECTIVES: Linezolid is a last-resort antimicrobial in human clinical settings to treat multidrug-resistant Gram-positive bacterial infections. Mobile linezolid resistance genes (optrA, poxtA, and cfr) have been detected in various sources worldwide. However, the presence of linezolid-not-susceptible bacteria and mobile linezolid resistance genes in Japan remains uncertain. Therefore, we clarified the existence of linezolid-not-susceptible bacteria and mobile linezolid resistance genes in farm environments in Japan. METHODS: Enterococci isolates from faeces compost collected from 10 pig and 11 cattle farms in Japan in 2021 were tested for antimicrobial susceptibility and possession of mobile linezolid resistance genes. Whole-genome sequencing of optrA and/or poxtA genes positive-enterococci was performed. RESULTS: Of 103 enterococci isolates, 12 from pig farm compost were not-susceptible (2 resistant and 10 intermediate) to linezolid. These 12 isolates carried mobile linezolid resistance genes on plasmids or chromosomes (5 optrA-positive Enterococcus faecalis, 6 poxtA-positive E. hirae or E. thailandicus, and 1 optrA- and poxtA-positive E. faecium). The genetic structures of optrA- and poxA-carrying plasmids were almost identical to those reported in other countries. These plasmids were capable of transferring among E. faecium and E. faecalis strains. The optrA- and poxtA-positive E. faecium belonged to ST324 (clade A2), a high-risk multidrug-resistant clone. The E. faecalis carrying optrA gene on its chromosome was identified as ST593. CONCLUSIONS: Although linezolid is not used in livestock, linezolid-not-susceptible enterococci could be indirectly selected by frequently used antimicrobials, such as phenicols. Moreover, various enterococci species derived from livestock compost may serve as reservoirs of linezolid resistance genes carried on globally disseminated plasmids and multidrug-resistant high-risk clones.


Assuntos
Anti-Infecciosos , Compostagem , Enterococcus faecium , Animais , Humanos , Bovinos , Suínos , Linezolida/farmacologia , Enterococcus/genética , Antibacterianos/farmacologia , Gado , Fazendas , Japão , Enterococcus faecium/genética , Farmacorresistência Bacteriana/genética , Anti-Infecciosos/farmacologia
9.
Microbiol Spectr ; 12(3): e0372423, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38329344

RESUMO

Enterococcus faecium (Efm) is a leading cause of hospital-associated (HA) infections, often enriched in putative virulence markers (PVMs). Recently, the Efm clade B was assigned as Enterococcus lactis (Elts), which usually lack HA-Efm infection markers. Available databases for extracting PVM are incomplete and/or present an intermix of genes from Efm and Enterococcus faecalis, with distinct virulence profiles. In this study, we constructed a new database containing 27 PVMs [acm, scm, sgrA, ecbA, fnm, sagA, hylEfm, ptsD, orf1481, fms15, fms21-fms20 (pili gene cluster 1, PGC-1), fms14-fms17-fms13 (PGC-2), empA-empB-empC (PGC-3), fms11-fms19-fms16 (PGC-4), ccpA, bepA, gls20-glsB1, and gls33-glsB] from nine reference genomes (seven Efm + two Elts). The database was validated against these reference genomes and further evaluated using a collection of well-characterized Efm (n = 43) and Elts (n = 7) control strains, by assessing PVM presence/absence and its variants together with a genomic phylogeny constructed as single-nucleotide polymorphisms. We found a high concordance between the phylogeny and in silico findings of the PVM, with Elts clustering separately and mostly carrying Elts-specific PVM gene variants. Based on our validation results, we recommend using the database with raw reads instead of assemblies to avoid missing gene variants. This newly constructed database of 27 PVMs will enable a more comprehensive characterization of Efm and Elts based on WGS data. The developed database exhibits scalability and boasts a range of applications in public health, including diagnostics, outbreak investigations, and epidemiological studies. It can be further used in risk assessment for distinguishing between safe and unsafe enterococci.IMPORTANCEThe newly constructed database, consisting of 27 putative virulence markers, is highly scalable and serves as a valuable resource for the comprehensive characterization of these closely related species using WGS data. It holds significant potential for various public health applications, including hospital outbreak investigations, surveillance, and risk assessment for probiotics and feed additives.


Assuntos
Enterococcus faecium , Infecções por Bactérias Gram-Positivas , Humanos , Enterococcus faecium/genética , Virulência/genética , Enterococcus/genética , Enterococcus faecalis/genética , Antibacterianos , Infecções por Bactérias Gram-Positivas/epidemiologia
10.
Antonie Van Leeuwenhoek ; 117(1): 40, 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38393447

RESUMO

Enterococci are ubiquitous microorganisms in almost all environments, from the soil we step on to the food we eat. They are frequently found in naturally fermented foods, contributing to ripening through protein, lipid, and sugar metabolism. On the other hand, these organisms are also leading the current antibiotic resistance crisis. In this study, we performed whole-genome sequencing and comparative genomics of an Enterococcus faecium strain isolated from an artisanal Mexican Cotija cheese, namely QD-2. We found clear genomic differences between commensal and pathogenic strains, particularly in their carbohydrate metabolic pathways, resistance to vancomycin and other antibiotics, bacteriocin production, and bacteriophage and CRISPR content. Furthermore, a bacteriocin transcription analysis performed by RT-qPCR revealed that, at the end of the log phase, besides enterocins A and X, two putative bacteriocins not reported previously are also transcribed as a bicistronic operon in E. faecium QD-2, and are expressed 1.5 times higher than enterocin A when cultured in MRS broth.


Assuntos
Bacteriocinas , Queijo , Enterococcus faecium , Bacteriocinas/metabolismo , Enterococcus faecium/genética , Enterococcus faecium/metabolismo , Enterococcus/genética , Genômica
11.
Mymensingh Med J ; 33(1): 107-115, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38163781

RESUMO

Enterococcus species was frequently considered to be commensal organisms but last few decades it has emerged as an important cause of health care associated infections. The presence of virulent genes is one of a key factor for which Enterococcus spp. is gaining attention. In this study, we aim to determine the frequency of virulence genes in uropathogenic Enterococcus species. A total of 46 Enterococcus strains isolated from January 2017 to December 2017. Urine samples were collected from adult clinically suspected urinary tract infected patients from the inpatient and outpatient department of Dhaka Medical College Hospital, Bangladesh irrespective of sex and antibiotic intake. Potential virulence genes such as asa, esp, ace, ebp, cyl, gelE, pilA, pilB, sprE, scm, fms8, ecbA and hyl were detected by PCR using specific primers. Among 46 culture positive Enterococcus, 33(71.74%) were E. faecalis, 11(23.91%) were E. faecium, 2(4.35%) were unidentified. Of the 44 identified Enterococci (33 E. faecalis and 11 E. faecium), 43(97.73%) were positive for pilB, 41(93.18%) for both scm and fms8, 39(88.64%) were positive for ebp, 34(77.27%) for gelE, 32(72.78%) for esp, 31(70.45%) for ecbA, 30(68.18%) for sprE, 28(63.67%) for pilA, 25(56.82%) for ace, 21(47.73%) for cyl, 20(45.45%) for asa and 3(6.82%) for hyl gene. Different virulence factors could be associated with the pathogenicity of E. faecalis and E. faecium and these genes are extensively available among the Enterococcus species.


Assuntos
Enterococcus faecium , Infecções Urinárias , Adulto , Humanos , Enterococcus/genética , Virulência/genética , Enterococcus faecalis/genética , Enterococcus faecium/genética , Bangladesh , Centros de Atenção Terciária , Antibacterianos/farmacologia , Testes de Sensibilidade Microbiana , Farmacorresistência Bacteriana/genética
12.
Foodborne Pathog Dis ; 21(1): 36-43, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37824752

RESUMO

Enterococci can act as reservoirs for antibiotic-resistant genes that are potentially at risk of being transferred to other bacteria that inhabit in the gastrointestinal tract. The aim of this study was to determine the phenotypic and molecular characteristics of antibiotic-resistant enterococci isolated from probiotic preparations. In total, we isolated 15 suspected Enterococcus species from 5 compound probiotics, which were identified by 16S rDNA as 12 Enterococcus faecium and 3 Enterococcus faecalis. Determination of antimicrobial susceptibility by the microdilution broth method showed widespread resistance to sulfamethoxazole (100%), norfloxacin (99.3%), azithromycin (99.3%), gentamicin (86.7%), and chloramphenicol (20%). Whole genome sequencing of five resistant strains revealed that all had circular DNA chromosomes and that E. faecium J-1-A to J-4-A contained a plasmid, while E. faecalis J-5-A did not. The results of the resistance gene analysis revealed that each strain contained approximately 30 resistance genes, with the antibiotic resistance genes and the multidrug resistance efflux pump genes mdtG, lmrC, and lmrD detected in all strains. The chloramphenicol resistance genes ykkC and ykkD were first identified in E. faecalis. And there were 21, 19, 21, 21, and 29 virulence factors involved in strains, respectively. Further analysis of the gene islands (GIs) revealed that each strain contained more than 10 GIs. The above results confirm the existence of hidden dangers in the safety of probiotics and remind us to carefully select probiotic preparations containing enterococcal strains to avoid the potential spread of resistance and pathogenicity.


Assuntos
Enterococcus faecium , Probióticos , Enterococcus/genética , Farmacorresistência Bacteriana/genética , Testes de Sensibilidade Microbiana , Antibacterianos/farmacologia , Enterococcus faecium/genética , Enterococcus faecalis/genética , Cloranfenicol , Fatores de Virulência/genética
13.
Nat Microbiol ; 9(1): 108-119, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38151647

RESUMO

Gut environments harbour dense microbial ecosystems in which plasmids are widely distributed. Plasmids facilitate the exchange of genetic material among microorganisms while enabling the transfer of a diverse array of accessory functions. However, their precise impact on microbial community composition and function remains largely unexplored. Here we identify a prevalent bacterial toxin and a plasmid-encoded resistance mechanism that mediates the interaction between Lactobacilli and Enterococci. This plasmid is widespread across ecosystems, including the rumen and human gut microbiota. Biochemical characterization of the plasmid revealed a defence mechanism against reuterin, a toxin produced by various gut microbes, such as Limosilactobacillus reuteri. Using a targeted metabolomic approach, we find reuterin to be prevalent across rumen ecosystems with impacts on microbial community structure. Enterococcus strains carrying the protective plasmid were isolated and their interactions with L. reuteri, the toxin producer, were studied in vitro. Interestingly, we found that by conferring resistance against reuterin, the plasmid mediates metabolic exchange between the defending and the attacking microbial species, resulting in a beneficial relationship or mutualism. Hence, we reveal here an ecological role for a plasmid-coded defence system in mediating a beneficial interaction.


Assuntos
Limosilactobacillus reuteri , Simbiose , Humanos , Animais , Ecossistema , Plasmídeos/genética , Propano/metabolismo , Limosilactobacillus reuteri/genética , Enterococcus/genética
14.
J Environ Sci (China) ; 137: 195-205, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37980008

RESUMO

Antimicrobial resistance in the laying hen production industry has become a serious public health problem. The antimicrobial resistance and phylogenetic relationships of the common conditional pathogen Enterococcus along the laying hen production chain have not been systematically clarified. 105 Enterococcus isolates were obtained from 115 environmental samples (air, dust, feces, flies, sewage, and soil) collected along the laying hen production chain (breeding chicken, chick, young chicken, and commercial laying hen). These Enterococcus isolates exhibited resistance to some clinically relevant antibiotics, such as tetracycline (92.4%), streptomycin (92.4%), and erythromycin (91.4%), and all strains had multidrug resistance phenotypes. Whole genome sequencing characterized 29 acquired antibiotic resistance genes (ARGs) that conferred resistance to 11 classes of antibiotics in 51 pleuromutilin-resistant Enterococcus isolates, and lsa(E), which mediates resistance to pleuromutilins, always co-occurred with lnu(B). Alignments with the Mobile Genetic Elements database identified four transposons (Tn554, Tn558, Tn6261, and Tn6674) with several ARGs (erm(A), ant(9)-la, fex(A), and optrA) that mediated resistance to many clinically important antibiotics. Moreover, we identified two new transposons that carried ARGs in the Tn554 family designated as Tn7508 and Tn7492. A complementary approach based on conventional multi-locus sequence typing and whole genome single nucleotide polymorphism analysis showed that phylogenetically related pleuromutilin-resistant Enterococcus isolates were widely distributed in various environments on different production farms. Our results indicate that environmental contamination by antimicrobial-resistant Enterococcus requires greater attention, and they highlight the risk of pleuromutilin-resistant Enterococcus and ARGs disseminating along the laying hen production chain, thereby warranting effective disinfection.


Assuntos
Antibacterianos , Enterococcus , Animais , Feminino , Enterococcus/genética , Antibacterianos/farmacologia , Galinhas/genética , Filogenia , Tipagem de Sequências Multilocus , Farmacorresistência Bacteriana/genética , Testes de Sensibilidade Microbiana , 60595
15.
BMC Genomics ; 24(1): 667, 2023 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-37932698

RESUMO

BACKGROUND: The gut microbiota is considered a rich source for potential novel probiotics. Enterococcus genus is a normal component of a healthy gut microbiota, suggesting its vital role. Nosocomial infections caused mainly by E. facalis and E. faecium have been attributed to the plasticity of the Enterococcus genomes. In this study, we assessed the probiotic and safety characteristics of two E. lactis strains isolated from the human gut microbiota using in-vitro and in silico approaches. Additionally, the safety of the E. lactis species was evaluated using comparative genomics analysis. RESULTS: The two E. lactis strains 10NA and 50NA showed resistance to bile salts and acid tolerance with antibacterial activity against Escherichia coli, Salmonella typhi, and Clostridioides difficile. For safety assays, the two strains did not display any type of hemolysis on blood agar, and the survival of Caco-2 cells was not significantly different (P-value > 0.05) compared to the control using cell free supernatants at 100% (v/v), 50% (v/v), 10% (v/v), and 5% (v/v) concentrations. Regarding antibiotic susceptibility, both strains were sensitive to vancomycin, tetracycline, and chloramphenicol. Comprehensive whole-genome analysis revealed no concerning associations between virulence or antibiotic resistance genes and any of the identified mobile genetic elements. Comparative genome analysis with closely related E. faecium species genomes revealed the distinctive genomic safety of the E. lactis species. CONCLUSIONS: Our two E. lactis strains showed promising probiotic properties in-vitro. Their genomes were devoid of any transferable antibiotic resistance genes. In silico comparative analysis confirmed the safety of the E. lactis species. These results suggest that E. lactis species could be a potential source for safer Enterococcus probiotic supplements.


Assuntos
Enterococcus faecium , Probióticos , Humanos , Células CACO-2 , Testes de Sensibilidade Microbiana , Enterococcus/genética , Antibacterianos , Genômica , Enterococcus faecium/genética
16.
Biochem Biophys Res Commun ; 685: 149184, 2023 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-37922787

RESUMO

Fecal microRNAs (miRNAs) derived from intestinal epithelial cells have been suggested to influence gut microbiota homeostasis. The present study examined whether fecal miRNAs alter the structure of cultured gut microbiota. Fecal bacteria isolated from murine cecal contents were cultured for 24 h under anaerobic conditions. Supplementation with fecal small RNAs isolated from cecal contents altered the structure of cultured fecal microbiota as assessed by 16S rRNA gene sequence analysis. In particular, fecal small RNAs increased Enterococcus spp. Fractionation of fecal small RNAs by ultrafiltration showed that small RNAs smaller than 10 kDa significantly increased enterococci compared to those larger than 10 kDa, as assessed by quantitative PCR, suggesting that the increase in enterococci by fecal small RNAs can mainly be attributed to miRNAs. Negative control miRNA that has low homology to miRNA sequences of human, mouse, and rat, failed to increase enterococci. Therefore, the findings from the present study employing cultured fecal bacteria suggest that fecal small RNAs, most likely host-derived miRNAs, alter gut microbiota structure by expanding enterococci in a sequence-dependent manner.


Assuntos
Microbioma Gastrointestinal , MicroRNAs , Microbiota , Humanos , Camundongos , Ratos , Animais , MicroRNAs/genética , MicroRNAs/análise , Microbioma Gastrointestinal/genética , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/análise , Fezes/microbiologia , Enterococcus/genética
17.
Sci Rep ; 13(1): 18609, 2023 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-37903806

RESUMO

The emergence of antimicrobial-resistant, livestock-associated Enterococcus faecalis represents a public health concern. Here, we report the isolation, molecular detection of virulence and antimicrobial resistance determinants, in addition to the phylogenetic analyses of 20 Enterococcus species using whole genome sequencing analysis of 15 Enterococcus faecalis strains including six strains of three novel sequence types, three Enterococcus faecium and two Enterococcus durans. All strains were isolated from food chain animals in South Africa. Enterococcus strains were isolated on bile aesculin azide agar, followed by identification using MALDI-TOF MS analysis. Antibiotic susceptibility testing was performed using the Kirby-Bauer disk diffusion method. The genomic DNA of the isolates was extracted and sequencing was performed using the Illumina MiSeq platform. Sequence reads were trimmed and de novo assembled. The assembled contigs were analyzed for antimicrobial resistance genes and chromosomal mutations, extra-chromosomal plasmids, and multi-locus sequence type (MLST). Multidrug antimicrobial resistance genes conferring resistance to aminoglycosides (ant(6)-Ia, aph(3')-IIIa, sat4, and spw), lincosamides (lnu(B), lsa(A), and lsa(E)), macrolides (erm(B)), trimethoprim (dfrG) and tetracyclines (tet(L) and tet(M)) were identified. Plasmid replicons were detected in seven E. faecalis and three E. faecium isolates. The sequence type (ST) of each isolate was determined using the Enterococcus PubMLST database. Ten STs were identified in the collection, three of which (ST1240, ST1241, and ST1242) have not been previously reported and are described in the present study for the first time. To compare the sequenced strains to other previously sequenced E. faecalis strains, assembled sequences of E. faecalis from livestock were downloaded from the PubMLST database. Core genome-based phylogenetic analysis was performed using ParSNP. The detection of multiple drug-resistance in Enterococcus including E. faecalis and E. faecium highlights the significance of genomic surveillance to monitor the spread of antimicrobial resistance in food chain animals. In addition, the genome sequences of Enterococcus strains reported in the present study will serve as a reference point for future molecular epidemiological studies of livestock-associated and antibiotic-resistant E. faecalis in Africa. In addition, this study enables the in-depth analysis of E. faecalis genomic structure, as well as provides valuable information on the phenotypic and genotypic antimicrobial resistance, and the pathogenesis of livestock-associated E. faecalis and E. faecium.


Assuntos
Enterococcus faecium , Infecções por Bactérias Gram-Positivas , Animais , Enterococcus faecalis , Antibacterianos/farmacologia , Gado/genética , Filogenia , Tipagem de Sequências Multilocus , Farmacorresistência Bacteriana/genética , Enterococcus/genética , Sequenciamento Completo do Genoma , África do Sul , Testes de Sensibilidade Microbiana , Infecções por Bactérias Gram-Positivas/veterinária , Infecções por Bactérias Gram-Positivas/epidemiologia
18.
Cell Host Microbe ; 31(9): 1425-1427, 2023 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-37708849

RESUMO

In this issue of Cell Host & Microbe, Jang et al. decode an intriguing paradox: excessive antimicrobial peptide-regenerating family member 3 (REG3) expression in inflammatory bowel disease (IBD) patients depletes protective enterococci. This depletion impairs the NOD2 anti-inflammatory pathway and perpetuates inflammation, thus providing insight into IBD pathogenesis.


Assuntos
Doenças Inflamatórias Intestinais , Humanos , Enterococcus/genética , Inflamação , Proteína Adaptadora de Sinalização NOD2/genética
19.
BMC Pediatr ; 23(1): 434, 2023 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-37648974

RESUMO

BACKGROUND: This study aimed to investigate the intestinal carrier status of Enterococcus spp. among children in a pediatric intensive care unit (PICU) and reveal the role of hospitalization in the alteration of resistance phenotypes and clonal diversity of the isolates during admission and discharge periods. METHODS: Two separate stool samples were collected from hospitalized patients in the pediatric intensive care unit at admission and discharge times. The culture was done, and Enterococcus species were tested for antimicrobial susceptibility and carriage of vanA-D gene subtypes. Random Amplified Polymorphic DNA (RAPD)-PCR was used for a phylogenetic study to check the homology of pairs of isolates. RESULTS: The results showed carriage of Enterococci at admission, discharge, and at both time points in 31%, 28.7%, and 40.1% of the cases, respectively. High frequencies of the fecal Enterococcus isolates with vancomycin-resistance (VR, 32.6% and 41.9%), high-level of gentamicin-resistance (HLGR, 25.6% and 27.9%), and multi-drug resistance phenotypes (MDR, 48.8% and 65.1%) were detected at admission and discharge times, respectively. Resistance to vancomycin, ampicillin, and rifampicin was higher among E. faecium, but resistance to ciprofloxacin was higher in E. faecalis isolates. The increased length of hospital stay was correlated with the carriage of resistant strains to vancomycin, ampicillin, and ciprofloxacin. While the homology of the isolates was low among different patients during hospitalization, identical (9%) and similar (21%) RAPD-PCR patterns were detected between pairs of isolates from each patient. CONCLUSIONS: The high rate of intestinal carriage of VR, HLGR-, and MDR-Enterococci at admission and during hospitalization in the PICU, and the impact of increased length of hospital stay on the fecal carriage of the resistant strains show the importance of antibiotic stewardship programs to control their transmission and spread in children.


Assuntos
Hospitalização , Vancomicina , Humanos , Criança , Filogenia , Técnica de Amplificação ao Acaso de DNA Polimórfico , Unidades de Terapia Intensiva Pediátrica , Ampicilina , Ciprofloxacina , Enterococcus/genética , Fenótipo
20.
Microb Ecol ; 86(4): 2583-2605, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37433981

RESUMO

Enterococcus species have been described as core members of the microbial community of Spodoptera frugiperda (Lepidoptera: Noctuidae) and have been previously reported as insecticide degrading agents. This study aimed to investigate the molecular composition of these microbial symbionts of S. frugiperda to better understand their association with the host and their potential for insecticide metabolization. Through phenotypic assays and comparative genomic analyses of several pesticide-degrading Enterococcus isolated from the gut of S. frugiperda larvae, we identified two new species: Enterococcus entomosocium n. sp. and Enterococcus spodopteracolus n. sp. Their identities as new species were confirmed by whole genome alignment, utilizing cut-offs of 95-96% for the average nucleotide identity (ANI) and 70% for the digital DNA: DNA hybridization (dDDH) values. The systematic positioning of these new species within the genus Enterococcus was resolved using genome-based analysis, revealing Enterococcus casseliflavus as a sister group of E. entomosocium n. sp., and Enterococcus mundtii as a sister group of E. spodopteracolus n. sp. Comparative genomic analyses of several isolates of E. entomosocium n. sp. and E. spodopteracolus n. sp. provided a better assessment of the interactions established in the symbiotic association with S. frugiperda and led to the discovery of misidentified new species of Enterococcus associated with insects. Our analyses indicated that the potential of E. entomosocium n. sp. and E. spodopteracolus n. sp. to metabolize different pesticides arises from molecular mechanisms that result in rapid evolution of new phenotypes in response to environmental stressors, in this case, the pesticides their host insect is exposed to.


Assuntos
Inseticidas , Praguicidas , Animais , Spodoptera/genética , Larva , Enterococcus/genética , Genômica , DNA , Zea mays
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...